Мультимодальные LLM: когда ИИ видит, слышит и понимает контекст Что это? Модели, способные одновременно обрабатывать текст, изображения, аудио и видео. Это не просто "распознавание картинок", а глубокое понимание связей между разными типами данных. Пример работы: Загружаете фото схемы электронной платы + текстовый запрос: "Найди ошибку в разводке конденсатора C7 и предложи исправление в формате KiCad". Модель: 1️⃣ Анализирует изображение, 2️⃣ Сопоставляет с текстовым контекстом, 3️⃣ Генерирует инструкцию с исправлением. --- Ключевые возможности и применение Тип данных Что умеет модель Практическое применение Текст + Изображение Описание сцен, анализ графиков, чтение рукописных заметок Автоматизация документооборота, генерация ALT-текста, поиск дефектов на чертежах Текст + Аудио Транскрибация с контекстным анализом, генерация эмоциональной речи Виртуальные ассистенты с "характером", анализ колл-центров, озвучка презентаций Видео + Текст Понимание сюжета, поиск ключевых моментов, аннотирование Автосуммаризация записей встреч, модерация контента, создание монтажных листов --- ️ Как работать с мультимодальностью? Выбор инструментов: OpenAI GPT-4o (vision + text + voice) — через API или ChatGPT. Google Gemini 1.5 — поддерживает до 1 млн токенов контекста (включая видео!). Open-source: LLaVA, Fuyu-8B (можно запустить локально с GPU). Специфика промтов: Четко указывайте тип данных: "Проанализируй скриншот ошибки (вложение 1) и лог-файл (вложение 2). Предложи 3 решения." Управляйте фокусом: "Сравни графики продаж за 2023 и 2024 (PDF-страница 5). Сосредоточься на падении в Q3." Используйте ролевые модели: "Ты инженер-электронщик. По фото прототипа определи, где перегревается компонент." Технические требования: Для локальных моделей: GPU с 8+ GB VRAM (например, LLaVA-1.6 требует NVIDIA RTX 3090). В облаке: API с поддержкой multipart/form-data (для загрузки бинарных файлов). --- Зачем это технарю? - Автоматизация сложных задач: Запрос: "По видео сборки робота составь checklist для тестирования (вывод в Markdown)". Результат: Готовый чеклист с привязкой к временным меткам. - Работа с документацией: Анализ сканов ТУ, схем, диаграмм без ручного ввода данных. - Быстрый прототипинг: "Сгенерируй UI для приложения по этому наброску на салфетке (фото) + описание функционала (текст)". --- ️ Ограничения (на 2025 год): - Точность распознавания: Может ошибаться в деталях (например, номера микросхем на фото). - Контекстное окно: Видео длительностью >10 мин часто требуют препроцессинга. - Стоимость: Мультимодальные API в 3-5x дороже текстовых (например, GPT-4o vision — $5-15 за 1к запросов). --- Как начать? Поэкспериментируйте в Google Gemini (бесплатно) с загрузкой PDF/изображений. Для кода: Llama 3 с LLaVA (туториал). Протестируйте API через OpenRouter (поддержка >30 мультимодальных моделей). Главный принцип: Мультимодальность — не замена текстовым LLM, а мощное расширение для задач, где контекст требует визуала или звука.